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ABSTRACT 
A novel and innovative electrolytic cation exchange process has been developed to extract large quantities of CO2 in 

the form of bicarbonate and carbonate from natural seawater, and to simultaneously produce H2 gas in quantities and 

ratios intended for possible future production of hydrocarbons.  However this process has been limited by its energy 

efficiency and carbon dioxide production efficiency caused by the amount of time needed to re-establish equilibrium 

conditions in the module after a polarity reversal cycle.  To shorten the re-equilibrium times and improve carbon 

dioxide recovery, the strong cation exchange resin capacity in the electrode compartments was reduced from 2.1 eq/L 

to 1 eq/L.   This 50% reduction in capacity resulted in 33% improvement in production time of CO2.  In addition, 

quantitative gas sampling analyses of CO2 confirmed the relationship between seawater salinity, seawater carbonate 

concentration, and seawater temperature on ease of CO2 degassing from seawater. 

 

KEYWORDS: electrolytic cation exchange module (E-CEM), carbon dioxide, bicarbonate, ion exchange, membrane, 
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     INTRODUCTION
Solutions to solving global increases in anthropogenic levels of carbon dioxide (CO2) in the earth’s atmosphere have 

led to extensive research in the development of carbon capture and storage (CCS) technologies.1-4  The long term 

effects of storage in geological formations and in the ocean remain unknown and as a result there is increasing 

emphasis on utilizing the CO2 in industrial processes.2,3  Currently CO2 is commercially used by the petroleum and 

gas industry for the enhanced recovery of oil, gas and methane.2  CO2 is used in the food industry to carbonate 

beverages and as a protective atmosphere for food.  It is also used in fire-extinguishers, as an inerting atmosphere for 

welding, in the handling of flammable materials, and as a solvent for dry cleaning and separations.3  While such 

commercial CO2 applications are in demand, they simply do not utilize enough CO2 to have a significant impact on 

reducing CO2 emissions.3 

 

CO2 fixation in microalgae and its conversion to chemicals and polymers, offers yet more commercial applications 

that will help to reduce CO2 emissions and generate revenue to offset the cost of capture and separation technologies.2,3  

However these processes require the CO2 to be extremely pure.2,3  The CO2 from flue and stack gases contains SOx 

that greatly restricts microalgae growth and stops it all together at 50 ppm.3  Catalysts used in chemical conversion 

and reduction of CO2 will be poisoned rapidly by these impurities.1,2  In addition, proven scalable approaches to 

produce usable chemical fuels from CO2 (methanol and olefins) require a source of hydrogen.2,3,5  Since CO2 purity 

and the need for hydrogen are issues in chemical conversion of CO2 to useable chemicals and fuels, perhaps a cleaner 

more general approach to the removal of anthropogenic CO2 from the environment could be useful. 
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The world’s oceans contain approximately 100 mg/L of total carbon dioxide [CO2]T of which 2 to 3 percent is 

dissolved CO2 gas in the form of carbonic acid, 1% is carbonate and the remaining 96 to 97% is bound as 

bicarbonate.6,7  Comparing the seawater concentration on a weight per volume basis (w/v) to that of a stack gas (about 

300 mg/L) and air (about 0.77 mg/L)1 strongly suggests the world’s oceans could be the key to a more general, 

practical, and cleaner approach to removing the anthropogenic gas from the environment.   

 

Willauer et al. have modified and scaled-up continuous electrodionization (CEDI) technology to function as a novel 

electrolytic cation exchange module (E-CEM) for the simultaneous extraction of carbon dioxide from seawater and 

the production of hydrogen.8  This electrochemical approach is different from bipolar membrane electrodialysis 

(BPMED) used by Eisaman and coworkers to extract only CO2 from instant ocean.9  The BPMED module was 

configured to use low current, strong acid electrode solutions, and a combination of bipolar membranes, and individual 

cation ion and anion exchange membranes.  The process described within is different from Yamasaki’s process that 

extracts only CO2 from carbonate solutions created from absorption of CO2 from a flue gas stream that is passed 

through a sodium hydroxide solution.  The electrodialysis module used low current, strong acid electrode solutions, 

and a combination bipolar membranes and cation exchange membranes.10  The process is also different from the one 

previously reported by our group that used strong cation exchange resin with a capacity of 2.1 eq/L.8   

 

This latest modification has been named the electrolytic cation exchange module (E-CEM) and it indirectly separates 

and purifies CO2 from seawater as illustrated in eq 1. 

 

HCO3
- + CO3

-2 + H+ ⇄  H2CO3 ⇄ H2O + CO2 (g)      (1) 

 

The addition of protons to seawater, produced in the E-CEM, causes the bicarbonate and carbonate to re-equilibrate 

to carbonic acid at seawater pH less than or equal to 6.  The CO2 gas is vacuum stripped via a gas membrane, producing 

a stream of essentially pure CO2 gas with traces of water vapor, nitrogen, and oxygen.  The acidification of seawater 

below pH 6 has been the basis for standard ocean [CO2 ]T measurements for over 25 years.11 

 

In our previous work, the initial scale-up and integration of the E-CEM into a skid platform demonstrated the 

feasibility of the electrochemical concept for the simultaneous extraction of CO2 from seawater and production of H2.
8  

At seawater flowrates of 1900 mL/min, 92% of [CO2]T was extracted from the natural seawater at a pH ≤ 4.  In 

addition, a set of times were ascertained to provide operational parameters for the process.  These studies provided 

data needed to purse different E-CEM designs aimed at establishing faster equilibrium conditions for future modules 

during polarity reversal and to improve energy efficiencies.   

 

Polarity reversal was designed into the E-CEM process at regular intervals, called polarity cycles, to overcomer major 

challenges associated with mineral deposition on the electrode surface that occurs in the high pH environment of the 

cathode compartment.  Mineral deposition leads to higher electrical resistance in the module, a loss in electrical 

efficiencies, and the potential for damaging the module from restricting flow in the cathode compartment.  Polarity 

reversal is a common practice in the Electrodialysis Reversal (EDR) process to desalinate brackish ground and surface 

waters.12  The objective of this study is to increase the CO2 production efficiency of the E-CEM by reducing the 

amount of time needed after polarity reversal for the ion exchange resin in the electrode compartments to re-establish 

equilibrium conditions and the effluent seawater to drop below pH 6 to change the ionically bound carbonate and 

bicarbonate to CO2 gas.  For a defined current and set of operating conditions, the original scaled-up E-CEM took 

approximately 30 minutes to reach equilibrium after a polarity cycle.  A reduction in this equilibration time will 

increase the total amount of CO2 extracted per process unit time, and reduce the energy demands associated with re-

equilibrating the module.  This is essential to the overall long term economic feasibility of utilizing the process for 

carbon capture from seawater. 

 

The first approach to increasing CO2 production efficiency of the module was to reduce the strong cation exchange 

resin capacity in the electrode compartments from 2.1 eq/L to 1 eq/L.   The E-CEM’s performance was evaluated by 

measuring the effluent seawater pH, current, voltage, and electrical resistance profiles as a function of polarity cycle 
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and comparing them to those of the original scaled-up E-CEM.  In addition, relationships were established between 

natural seawater salinity, seawater carbonate concentration, and seawater temperature on the ease of CO2 degassing 

from seawater. 

 

EXPERIMENTAL METHODOLOGY 
Electrolytic Cation Exchange Module (E-CEM).  Figure 1 shows two schematics (a and b) that describe the 

differences between the original E-CEM configuration (a) and the E-CEM configuration (b) evaluated in this study.  

The E-CEMs are standard commercially available electrodeionization cells (Ionpure LX-X Module) modified to 

function as an electrolytic cation exchange module for the simultaneous extraction of H2 and CO2 from seawater.  The 

major components of the E-CEMs include a center compartment, electrode compartments (cathode and anode capable 

of reversing polarities), and two cation-permeable membranes which separate the three compartments.  Polyethylene 

extruded cation-permeable heterogeneous monolithic membranes incorporate cross-linked polymer with sulfonic acid 

groups attached.  The acid functionality provides discrete channels for cations to migrate through the polymer matrix 

while blocking the passage of anions.  Inert plastic particles were used in the center compartment to serve as a support 

structure for the membranes.  In this central compartment, the ions (Na+/H+) exchange in the liquid phase.  In addition, 

Figure 1 shows that the electrode compartments contain cation exchange resin.  The cation exchange resin, its amount, 

and capacity differ between original E-CEM (a) and the E-CEM (b) used in this evaluation.  The original E-CEM (a) 

contained 100% strong cation exchange resin from Rohm & Haas (IR-120) in both electrode compartments and its 

capacity is 2.1 eq/L.  In the modified module (Figure 1b.) each electrode compartment is configured to contain 50% 

less ion exchange capacity.  However, each electrode compartments is configured differently to achieve this objective.  

In Figure 1, the electrode compartments of the module are defined as side B and side A for each module.  In the 

module used in this evaluation Figure 1b, side B contains 100% strong acid ion exchange resin with a capacity of 1 

eq/L.  Side A contains 50% less of the strong acid cation exchange resin that was used in the original module (2.1 

eq/L).  This resin is mixed with 50% inert material to fill the compartment.  Polarity A and B define the electrode 

compartment side of the module (side A or B) from Figure 1.  Polarity A and polarity B designate the electrode 

compartment (side A or side B) that is functioning as the anode during the polarity cycle (modules pictured operating 

as polarity B). 

 

The resins and membranes used in the modules are typically used for years in commercial water treatment electrolysis 

processes.  Our water filtration and current densities are well within the specifications of all products used to construct 

the module.  After 4 years of intermittent use, we have not seen any degradation or deterioration of the resin or 

membranes used to construct the modules.  The anode and cathode titanium electrodes were coated with platinum and 

had an electrode active area of 497 cm2.    

 

Feed Through the Electrolytic Cation Exchange Module (E-CEM).  In this continuous flow process, seawater is 

passed through the center compartment of the E-CEM (Figure 1) at a flow rate of 0.5 gal/min (1900 mL/min), while 

fresh water is passed through the anode and cathode compartments each at 0.06 gal/min (230 mL/min).  Direct current 

(DC) is used to produce H+ ions, O2, and electrons at the anode.  These H+ ions migrated from the surface of the anode, 

through the cation-permeable membrane, and into the center compartment where they replace the Na+ ions in the 

seawater to acidify the seawater.  The Na+ ions are transferred through the membrane closest to the cathode and 

removed from the seawater.  Simultaneously at the cathode OH- ions and H2 are produced and electrons are consumed.  

The positive ions removed from the seawater (sodium being at the highest concentration) provide electrical neutrality 

in the cathode compartment to form a basic aqueous solution composed primarily of sodium hydroxide.  The fresh 

water used in the module is produced from the natural Key West (KW) seawater by a reverse osmosis system (RO).  

The fresh water had a conductivity of less than 200 µS/cm and measured approximately pH 7.  Magnesium and calcium 

ions from the seawater also migrate to the cathode compartment and produce scale on the cathode over time.  The 

effects of this scale are mitigated by cyclically reversing the module’s polarity.12 

 

Carbon Capture Skid and Procedure.  Since natural Key West seawater was used, the work was performed at the 

Naval Research Laboratory’s Corrosion Laboratory at Key West, FL to evaluate the E-CEM’s performance.  The 

module was incorporated into a portable skid along with an RO unit, power supply, pumps, a membrane contactor 
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carbon dioxide gas recovery system, hydrogen gas vacuum tower, and gas analyzer to form a carbon and hydrogen 

capture system, all operated by a control logic capable of maintaining automatic operation safely on a continual basis.  

A process flow diagram and labeled photograph of the carbon capture skid have previously been reported.8  Seawater 

was supplied to the skid by an in-house 40 psi supply line.  The water was filtered by two spin-down filters in series 

(100 m and 30 m).  After filtration, a portion of the seawater was sent to an 11 gallon high density polyethylene 

container that functions as the seawater feed container.  Before the seawater in the seawater feed tank was fed to the 

center compartment of the E-CEM at 0.5 gallon/minute (1900 mL/min), it was pumped through a 5 m filter cartridge.  

The other portion of the seawater supply was fed through a 5 m filter cartridge to the RO system for processing.   The 

RO system was an EPRO-1000SW from Crane Environmental, Inc. (Venice, FL) that is capable of producing 0.7 

gallons per minute (1000 gallons per day) of permeate (fresh water quality from seawater at a conductivity of 

approximately 200 S/cm).  This water was stored in an 11 gallon polyethylene container that is specified as the RO 

feed container.  This water was the feed water to the electrode compartments of the E-CEM at a total flow rate of 0.12 

gallon/minute (460 mL/min).  The flow was split within the E-CEM resulting in electrode compartment flow rates of 

0.06 gallon/minute (230 mL/min) to each electrode compartment.   

 

A Mastech HY3030EX 0-30 amp, 0-30 volt high-current, regulated DC power supply was used to supply the current 

to the E-CEM electrodes.  The seawater pH changed as a function of applied current to the E-CEM.  Effluent seawater 

pH was monitored continuously using a standard combination electrode as it exited the center compartment of the 

module.  Vision 290 Unitronics hardware and software were used to control the system components (RO, E-CEM, 

well pump, vacuum towers, vacuum pumps, solenoid valves, and power supply) so they operated and functioned 

together as an integrated unit on a continual automated basis, with limited operator control required.  The CO2 gas 

from the effluent acidified seawater flowing at 0.5 gallons/minute was vacuum stripped using a commercial membrane 

contactor (Liqui-Cel® 2.5 x 8 polyethylene hollow fiber membrane contactor (Membrana-Charlotte).  The [CO2]T 

content of the acidified effluent seawater was measured by coulometry (UIC Inc, Joliet, IL 60436) after contact with 

the membrane contactor to determine the efficiency of the extraction method.11 The [CO2]T content of the natural Key 

West seawater before acidification was measured to be approximately 100 mg/L.  Simultaneously, a standard purpose-

built hydrogen gas vacuum tower processed the water from the acting cathode compartment of the module as it 

liberated H2 gas.  The H2 gas was measured qualitatively throughout the operation by a standard Honeywell gas 

analyzer (7866 digital gas analyzer), as was the CO2.   

 

TRI Air Testing Inc performed separate evaluations of gas samples of CO2 and H2 collected during the test evaluation. 

 

RESULTS AND DISCUSSION 
The E-CEM takes advantage of continuous electrodeionization (CEDI) principles of removing ionizable species from 

liquids by manipulating their ionic transport properties using an applied electrical potential, ion exchange resins, and 

semipermeable ion exchange membranes as electrically active media.12-17  In the E-CEM process depicted in Figure 1 

(modules pictured operating as polarity B), sodium chloride (NaCl) is used to represent seawater and HCl is used to 

represent the acidified effluent seawater.  When direct current is applied to the module, H+ ions and O2 gas are 

generated at the anode by the oxidation of the anolyte RO water.  The amount of H+ generated by the anode is 

proportional to the applied electrical current, which follows Faraday’s law.  The anode and cathode reactions to 

theoretically determine the amount of H+, OH-, H2, and O2 produced per amp-second of current passed through the 

electrodes has been previously detailed by Willauer et al.18,19  The O2 gas is flushed from the anode compartment with 

the flow of the anolyte (deionized water).  The H+ ions are driven from the surface of the anode, through the cation-

permeable membrane, and into the center compartment where they replaced the Na+ in the flowing seawater.  This 

causes the effluent seawater to be acidified without the need for any additional chemicals.  At a seawater pH less than 

or equal to 6, the bicarbonate and carbonate in the seawater are re-equilibrated to carbonic acid (eq 1).  The Na+ ions 

in the center compartment are passed through the membrane closest to the cathode to produce primarily sodium 

hydroxide and H2 gas in the cathode compartment.  The NaOH and H2 gas are continuously flushed from the cathode 

compartment with the flow of the catholyte (RO water).  The CO2 from the carbonic acid in the acidified seawater is 

vacuum stripped by a gas permeable membrane contactor.  The acidified seawater is recombined with the solutions 

from the cathode and anode compartment.   
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When the polarity is reversed, the ion exchange resin in the electrode compartment functioning as the anode is in the 

sodium Na+ form, the H+ ions generated at the anode exchange on the resin and releases the Na+ ions.  The Na+ ions 

then migrate through the cation exchange membrane and into the center compartment.  The migrating Na+ ions pass 

through the cation exchange membrane at the electrode now acting as the cathode and exchange on the resin to convert 

all the resin in that compartment to the sodium form.  Equilibrium conditions are re-established during the polarity 

cycle when all the resin in the compartment now acting as the anode is regenerated back into the hydrogen form and 

all the resin in the cathode is regenerated back into the sodium form.  This allows more H+ ions to pass through the 

membrane closest to the anode to reduce the seawater pH below 6.   

 

Figure 1a shows the original scaled-up E-CEM contained 100% strong cation exchange resin at a capacity of 2.1 eq/L 

in both electrode compartments.  This module took approximately 30 minutes to reach equilibrium after the module’s 

polarity was reversed.  To reduce the time needed after polarity reversal for the ion exchange resin in the electrode 

compartments to re-establish equilibrium conditions, the capacity of the ion exchange resin in the compartments was 

reduced from 2.1 eq/L to 1.0 eq/L.   

 

Figures 2a and 2b compare the pH profiles measured as a function of time for a defined electrode compartment side 

(side A or B) at an applied module current of 20 Amps.  Figure 2a shows 7 polarity cycles for Polarity A.  The electrode 

compartment acting as the anode during these 7 cycles was filled with a mixture containing 50% cation exchange resin 

with a capacity of 2.1 eq/L and 50% inert material.  The cathode compartment was filled with cation exchange resin 

with a capacity of 1.0 eq/L.  The initial pH of the influent Key West seawater during this evaluation was 8.18 ± 0.02.  

The Figure shows that after approximately 20 minutes have passed the pH of the effluent seawater dropped below 6.  

This is a function of the cation exchange resin capacity, volume (215 cm3), and applied current.  After 26 minutes the 

pH of the effluent seawater measured below 4.  Previous results have indicated that 92% of the CO2 is recoverable at 

a seawater pH below 4.5.8,18,19   

 

Figure 2b indicates that similar pH profiles are measured as a function of time for Polarity B at an applied module 

current of 20 Amps.  During these cycles the compartment acting as the anode contained 100% cation exchange resin 

with the capacity of 1 eq/L.  These results verify that two completely different approaches of reducing the ion exchange 

capacities in the electrode compartments reduced the seawater pH below 6. 

 

The pH profiles in Figures 2a and 2b are averaged for a given polarity and compared to the average profiles obtained 

for the original E-CEM.  Figure 3 shows that for a defined current, the modified E-CEM reduces the effluent seawater 

equilibrium pH to 6 in approximately 20 minutes compared to the original E-CEM that takes 30 minutes.  This 

improves the production time of CO2 by 33% over the original module.  Therefore a reduction in ion exchange capacity 

allows the equilibrium conditions to be re-established faster in the module.  This increase in production is crucial to 

the overall process feasibility of scaling and utilizing the process for carbon capture from seawater.     

 

Figure 4 compares the average of 7 electrical resistances (voltage divided by amperage) profiles as a function of time 

for Polarity A and B of the modified module.  Comparing the averages of both cycles shows that the measured 

resistance decreases by approximately 31% for Polarity A and only 20% for Polarity B over the first 45 minutes of 

the cycle.  Both cycles also indicate an increase in resistance 45 minutes into the cycle.  This is consistent with 

operational parameters ascertained for the original module.  The greater decrease in electrical resistance during 

Polarity A may be explained by the conductivity of the ion exchange resin in the electrode compartment acting as the 

anode.   

 

The conductivity () in the module is the sum of all the individual components involved in ion transport.  Figure 5 

shows a total of 5 components responsible for the conductivity of both the original module and the modified module.  

The sum of these components is given in equation 2  

 

 = 1 + 2 + 3 +4 + ĸ5    (2) 

 

http://www.ijesrt.com/


[Willauer*, 4.(10): October, 2015]  ISSN: 2277-9655 

 (I2OR), Publication Impact Factor: 3.785 

   

http: // www.ijesrt.com                 © International Journal of Engineering Sciences & Research Technology 

 [113] 
 

 

 

where 1 and 5 are the conductivities of the cation exchange resin and reverse osmosis permeate mixture in the 

electrode compartments, 2 and 4 are the conductivity of the cation exchange membranes, and  ĸ3 is the conductivity 

of the seawater and inert pellet mixture in the center compartment. 

 

1 and 5 are dependent on the characteristics of the cation exchange resin, particularly ion exchange capacity and 

DVB (divinyl-benzene) crosslinkage percentage.  This will vary from one ionic form to another.  2 and 4 are fairly 

constant, while 3 is dependent on the ratio and particle size of the inert pellets.  The electrical resistance ‘R’ () is 

related to the conductivity of the module by equation 3 

 

    R =  x/A      (3) 

 

where x is the distance between the electrodes in cm and A is the electrode effective area in cm2.  The area A may be 

expressed as a function of the electrode length (y) and width (z) as given in equation 4 and provided as the effective 

electrode active area, 497 cm2 (each). 

 

    A = (y)(z)      (4) 

 

The electrical resistance of the module is monitored as a function of the current and voltage supplied to the module 

during a defined polarity cycle.  Table 1 is the calculated average conductivity values for Polarity A and B over 7 

cycles.  The Table indicates that during polarity A the ion exchange material in the anode becomes more conductive 

at an average of 15 minutes into the cycle.  At this point the pH begins to fall below 6 and all the ion exchange material 

is regenerated back into the hydrogen form and all the resin in the cathode compartment is regenerated back into the 

sodium form.  The conductivity reaches a maximum of 0.0028 at an average of 30 minutes into the cycle. 

 

Similarly during polarity B the ion exchange material in the anode becomes more conductive at an average of 15 

minutes into the cycle.  The conductivity is initially higher in this compartment upon polarity reversal, but only reaches 

a maximum of 0.0025 at 25 minutes.  The difference in conductivity found between each polarity cycle indicates that 

the 50/50 mixture of cation ion exchange resin (2.1 eq) and inert material has the most conductivity and produces the 

least amount of resistance in the module over an average 45 minute cycle.  This decrease in resistance results in a 7% 

increase in power efficiency over the average 45 minute cycle.  Thus the average power during polarity A is 540 watts 

compared to 581 watts during polarity B. 

 

Figure 6 compares the average resistance as a function of time of the original E-CEM and the modified E-CEM.  For 

the purposes of this comparison, the original E-CEM was tested during this study to establish a set of baseline 

conditions for E-CEM comparison.  Figure 6 shows the average resistance for both polarity cycles of the original E-

CEM is approximately 0.96.  This value is 35% less than the average resistance of the modified E-CEM during polarity 

A (50/50 ion exchange and inert material) and 37% less than the average resistance of polarity B (50% less ion 

exchange capacity 1.0 eq/L).  The greater resistance in the modified E-CEM is a result of the conductivity of the ion 

exchange material in the electrode compartments. The average conductivity of the original module was measured to 

be 0.0038 compared to 0.0024 of the modified module.  This 37% reduction in conductivity results in a 37% increase 

in module resistance.  This increase in module resistance results in an increase in the average power requirements 

from 387 watts needed for the original module to 540 watts (polarity A) and 581 watts (polarity B) needed for the 

modified module. 

 

Willauer et al. have previously detailed how Faraday’s constant 96,487 A-second and the anode and cathode reactions 

within the E-CEM (Figure 1) are used to theoretically determine the amount of H+, OH-, H2, and O2 produced per 

amp-second of current passed through the electrodes in the process.18,19  Equation 5 shows the theoretical maximum 

molar amount of H2 gas derived at a current of 20 A within the E-CEM 
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The 0.0062 moles H2/min theoretically possible is equivalent to 0.0083 m3/hour H2.  The average power requirements 

for the original E-CEM was 0.387 kWh/h compared to the 0.540 kWh/h and 0.581 kWh/h values found for the 

modified module.  The hydrogen power consumption values at 100% efficiency are estimated to range from 46.6 

kWh/m3 (518 kWh/kg) for the original E-CEM to 65.1 kWh/m3 (724 kWh/kg) (polarity A) to 70 kWh/m3 H2 (778 

kWh/kg) (polarity B) for the modified E-CEM.   

 

The estimated H2 power consumption values for the E-CEM process are compared to the NEL commercial electrolysis 

processes.  NEL reports power consumption values ranging from 3.8 to 4.4 kWh/m3H2 (42.3 kWh/kg H2 to 48.9 

kWh/kg H2) for their water electrolyzer cell stacks.20  To produce 0.0083 m3/H2 at 100% efficiency by the NEL process 

it would take approximately 0.031 kWh/h to 0.036 kWh/h of power.  The E-CEM process needs 12 to 17 times more 

power to produce H2 gas than the traditional commercial water electrolysis process.   

 

Though modifying the E-CEM by reducing the conductivity of the ion exchange material in the electrode 

compartments improved the production time of CO2 by 33% over the original module, further modifications to the E-

CEM must be made so the process can compete with commercial electrolysis.  Since commercial off the shelf CEDI 

endblocks were used in these evaluations, key parameters discussed in equations 2, 3, and 4 cannot be fully adjusted 

to measure and determine their impact on increasing CO2 production time and reducing power consumption for H2 

production.  The results of this study will be used to purse custom design modifications to further improve CO2 

production time and reduce overall power consumption. 

 

Willauer, et al have recently ascertained from both the laboratory feasibility tests and scaled-up evaluations that CO2 

more readily degasses from seawater solutions higher in salt concentration and carbonate concentration at pH below 

6.8,19  In Table 2 the results are given for three separate evaluations of the original E-CEM process at NRL Key West 

during January 2011, April 2011, and January 2012.  The first evaluation in January 2011 of the scaled-up carbon 

capture system found that approximately 48% of the [CO2]T spontaneously degassed from the effluent seawater at pH 

3.63.  Further improvements in degassing the seawater were not achieved using different stripper columns to produce 

larger surface area for seawater degassing by a 600 mL/min vacuum pump operating at a vacuum of 12 inches of Hg. 

 

During the April 2011 evaluation a Liqui-Cel polyethylene hollow fiber membrane contactor was tested as a method 

to increase seawater surface area and thus improve in CO2 degassing efficiency from the seawater at pH below 6.21  

Gas permeable membranes work on the principle of dissolved gases (in this case carbon dioxide) diffusing across the 

membrane through the pores as a function of differential partial gas pressures.  As a result, these membranes are used 

in a variety of near atmospheric pressure applications such water purification, blood oxygenation, and artificial lung 

devices.22-25  They have also found utility in high pressure applications involving beverage carbonation.26,27  Table 2 

shows [CO2]T degassing between pH 3 and 4 increased from 48% to 92%.  Since the CO2 gas recovered is 

contaminated by the oil in the rotary vane pump, a diaphragm pump capable of 25 to 30 inches of Hg was purchased 

and used in the January 2012 evaluations of [CO2]T recovery.  During the evaluation it was found that only 63 to 66% 

of [CO2]T below pH of 4 could be recovered using a vacuum of approximately 29.1 inches of Hg.  This percentage 

was improved to 85% when the vacuum was increased to 30.5 inches of Hg using a rotary vane pump with a cold trap.  

 

The different [CO2]T recovery between the months of January and April may be explained by the decrease in bulk 

temperature of the influent seawater and its decrease in salinity as a function of decrease in seawater temperature.  It 

is well known that CO2 gas solubility is reduced in aqueous salt solutions compared to deionized water solutions.28-30  

In addition, CO2 gas solubility decreases with increasing liquid temperatures.31  Figure 7 illustrates the difference in 

resistance between the different tests series conducted in January, April, and August.  The average seawater 

temperature in January, April, and August was 22 oC, 25 oC, and 31 oC.  The greatest difference in resistance profiles 
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is shown for the data measured in the month of January 2011 and January 2012.  At lower seawater temperatures the 

electrical conductivity of the seawater decreases as the salinity decreases due to the lack of evaporation of the surface 

waters at colder temperatures.  This leads to an increase in the electrical resistance within the module.  In addition, 

under these conditions greater seawater surface area and greater vacuum requirements are needed for better CO2 

degassing efficiencies via vacuum membrane contactors. 

 

In addition to measuring [CO2]T content of seawater by coulometery during this evaluation, a Honeywell 7866 digital 

gas analyzer with a thermal conductivity detector was used to measure the amount of [CO2]T gas evolved from the 

membrane contactor at 29.1 inches of Hg.  From the Table 2, the [CO2]T content measured in the gas samples for a 

given pH of 3.67 and 3.46 was 66% and 63% respectively.  Similarly the seawater samples collected at those pH 

measured a loss of [CO2]T of 63% and 66% by coulometery.  These results indicate an excellent correlation between 

two different measuring techniques of [CO2]T content.  To further substantiate these results, gas samples were collected 

at 3.44 and 3.66 and sent to TRI Air Testing Inc.  Table 2 shows their analysis strongly supports results found by real 

time gas analysis and coulometery at seawater pH less than 4.  

 

CONCLUSIONS 
Based on the evaluation of the original E-CEM performance, a second module was modified to contain less ion 

exchange capacity in the electrode compartments.  The evaluation of this new design found CO2 production improved 

33% by reducing the amount of time it takes for the effluent seawater equilibrium pH to reach 6 after a change in 

polarity.  Evaluation of the resistance profiles and conductivity of the materials used in the electrode compartments 

found that the 50/50 mixture of cation ion exchange resin (2.1 eq) and inert material had the most conductivity and 

produced the least amount of resistance in the modified E-CEM.  This decrease in resistance resulted in a 7% increase 

in power efficiency over a cycle.  Comparing the resistance profiles and conductivity of both the original E-CEM and 

the modified E-CEM shows that the original module requires less average power to operate over a polarity cycle.   

 

Quantitative measurements of [CO2]T degassed from seawater correlated well with the quantitative difference in 

[CO2]T measured in the seawater by coulometry.  These quantitative measurements along with resistance profiles 

confirm that CO2 degassing at seawater pH below 6 is dependent on seawater temperature, salinity, and carbonate 

concentration.   

 

Finally, the E-CEM design evaluated in these studies proved to be even less efficient in energy consumption than the 

original E-CEM, and the overall E-CEM was 12 to 17 times less efficient in H2 gas production from the traditional 

commercial water electrolysis process.  However these studies have laid the groundwork needed to pursue future E-

CEM design modifications.  These modifications will be based on manipulating key parameters associated with the 

overall conductivity of the E-CEM.  These parameters along with an understanding of CO2 degassing dependence on 

seawater composition and temperature will lead to future E-CEM designs tailored towards maximizing both CO2 

extraction and H2 production at energy efficiencies closer to the 3.8 to 4.4 kWh/m3H2 (42.3 kWh/kg H2 to 48.9 kWh/kg 

H2) currently reported for commercial water electrolysis units. 
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FIGURE CAPTIONS 
 

Figure 1.  (a) Schematic of Original E-CEM and (b) Schematic of Modified E-CEM.  

 

Figure 2.  (a) A pH profile comparison of seven polarity cycles measured for the modified E-CEM at 20 A (408 A/m2 

current density) as a function of time, 45 minute cycle, polarity A and (b) A pH profile comparison of seven polarity 

cycles measured for the modified E-CEM at 20 A (408 A/m2 current density) as a function of time, 45 minute cycle, 

polarity B. 

 

Figure 3.  Average pH profiles for the original E-CEM as a function of time at 20 A (408 A/m2 current density), 

polarity A (■) and polarity B (□) compared to the modified E-CEM at the same current density, polarity A (●) and 

polarity B (○). 

 

Figure 4:  Average electrical resistance profile comparison of seven polarity cycles measured for the modified E-

CEM at 20 A (408 A/m2 current density) as a function of time, 45 minute cycle, polarity A (●), 45 minute cycle, 

polarity B (○). 

 

Figure 5:  Electrochemical components that affect the overall conductivity of the module 

 

Figure 6:  Average electrical resistance profiles as a function of time measured for the original E-CEM and the 

modified E-CEM at 20 A (408 A/m2 current density) and 45 minute cycles, modified E-CEM polarity A (●), polarity 

B (○), original E-CEM polarity A (■), polarity B (□). 

 

Figure 7:  A electrical resistance profile comparison of five polarity cycles measured for the original E-CEM at 20 A 

(408 A/m2 current density) as a function of time, January 2011 [40 minute cycle, polarity A (□), polarity B (■)], April 

2011 [45 minute cycle, polarity A (●), polarity B (○)],  August 2011 [45 minute cycle, polarity A (▼), polarity B ()], 

January 2012 [45 minute cycle, polarity A (▲), polarity B ()]. 
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Figure 1.  (a) Schematic of Original E-CEM and (b) Schematic of Modified E-CEM. 

 
 

 

 

 

 

 

Figure 2.  (a) A pH profile comparison of seven polarity cycles measured for the modified E-CEM at 20 A (408 

A/m2 current density) as a function of time, 45 minute cycle, polarity A and (b) A pH profile comparison of seven 

polarity cycles measured for the modified E-CEM at 20 A (408 A/m2 current density) as a function of time, 45 

minute cycle, polarity B. 
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Figure 3.  Average pH profiles for the original E-CEM as a function of time at 20 A (408 A/m2 current density), 

polarity A (■) and polarity B (□) compared to the modified E-CEM at the same current density, polarity A (●) and 

polarity B (○). 
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Figure 4:  Average electrical resistance profile comparison of seven polarity cycles measured for the modified E-

CEM at 20 A (408 A/m2 current density) as a function of time, 45 minute cycle, polarity A (●), 45 minute cycle, 

polarity B (○). 
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Figure 5:  Electrochemical components that affect the overall conductivity of the module. 
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Figure 6:  Average electrical resistance profiles as a function of time measured for the original E-CEM and the 

modified E-CEM at 20 A (408 A/m2 current density) and 45 minute cycles, modified E-CEM polarity A (●), 

polarity B (○), original E-CEM polarity A (■), polarity B (□). 
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Figure 7:  A electrical resistance profile comparison of five polarity cycles measured for the original E-CEM at 

20 A (408 A/m2 current density) as a function of time, January 2011 [40 minute cycle, polarity A (□), polarity B 

(■)], April 2011 [45 minute cycle, polarity A (●), polarity B (○)],  August 2011 [45 minute cycle, polarity A (▼), 

polarity B ()], January 2012 [45 minute cycle, polarity A (▲), polarity B ()]. 
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TABLE CAPTIONS 

 

 

Table 1.  The average measured values of effluent seawater pH, module current, voltage, and resistance as a 

function of time using the modified E-CEM during consecutive 45 minute polarity cycles at an applied module 

current of 20 A (408 A/m2 current density). 

 

Table 2. CO2 Degassed Samples from Acidification of KW seawater. 

 
Table 1.  The average measured values of effluent seawater pH, module current, voltage, and resistance as a function of time 

using the modified E-CEM during consecutive 45 minute polarity cycles at an applied module current of 20 A (408 A/m2 

current density). 

Time 

(minutes) 

Amps Volts Resistance pH Conductivity Polarity 

0 18.2 30.5 1.69 6.63 0.0021 A 

5 16.7 31.0 1.87 8.21 0.0019 A 

10 17.4 31.0 1.80 7.58 0.0020 A 

15 19.9 30.2 1.52 6.82 0.0024 A 

20 20.0 27.9 1.40 6.29 0.0026 A 

25 20.0 26.6 1.33 5.10 0.0027 A 

30 20.0 25.8 1.30 3.90 0.0028 A 

35 20.0 25.8 1.29 3.54 0.0028 A 

40 20.0 25.8 1.29 3.40 0.0028 A 

45 20.0 26.3 1.31 3.32 0.0028 A 

       

0 20.0 29.5 1.48 7.47 0.0024 B 

5 18.0 31.0 1.73 8.04 0.0021 B 

10 18.0 31.0 1.73 7.93 0.0021 B 

15 19.4 31.0 1.60 7.11 0.0023 B 

20 20.0 30.2 1.51 6.15 0.0024 B 

25 20.0 29.4 1.47 4.55 0.0025 B 

30 20.0 29.0 1.48 3.77 0.0025 B 

35 20.0 28.8 1.44 3.43 0.0025 B 

40 20.0 28.7 1.43 3.32 0.0025 B 

45 20.0 29.0 1.45 3.28 0.0025 B 
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Table 2. CO2 Degassed Samples from Acidification of KW seawater. 

Seawater 

Sample 

Date 

Seawater 

(pH) 

Vacuum 

Pump 

Vacuum 

pressure 

inches 

Mercury 

(%) Reduction of 

CO2 by 

Coulometery 

(%) CO2 

Gas by 

TCD 

(onsite) 

(%) CO2 in Gas 

by (Independent 

Evaluations) 

January 

2011 

8.03 No vacuum No pressure 0 ----- ----- 

 3.63 No vacuum No pressure 48 ----- ----- 

       

April 2011 8.26 No vacuum No pressure 0 ----- ------ 

 3.82 Rotary Vain 30 92 ----- ----- 

       

January 

2012 

8.18 No vacuum No pressure 0   

 3.67 diaphragm 29.1 63   

 3.46 diaphragm 29.1 66 63  

 3.44 diaphragm 29.1   65 

 3.66 diaphragm 29.1   63 

       

 3.81 Rotary vain 30.5 85   
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